Zell Up 15
(1) Ferber SG, Namdar D, Hen-Shoval D, Eger G, Koltai H, Shoval G,
Shbiro L, Weller A. The “Entourage Effect”: Terpenes Coupled with
Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders.
Curr Neuropharmacol. 2020;18(2):87-96. doi:
10.2174/1570159X17666190903103923. PMID: 31481004; PMCID: PMC7324885.
(https://pubmed.ncbi.nlm.nih.gov/31481004/)
(2) Bautista JL, Yu S, Tian L. Flavonoids in Cannabis sativa:
Biosynthesis, Bioactivities, and Biotechnology. ACS Omega. 2021 Feb
18;6(8):5119-5123. doi: 10.1021/acsomega.1c00318. PMID: 33681553; PMCID:
PMC7931196. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931196/)
(3) Russo EB. The Case for the Entourage Effect and Conventional
Breeding of Clinical Cannabis: No “Strain,” No Gain. Front Plant Sci.
2019 Jan 9;9:1969. doi: 10.3389/fpls.2018.01969. PMID: 30687364; PMCID:
PMC6334252. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334252/)
(4) Shafi Shahida, Ansari Hifzur Rahman, Bahitham Wesam, Aouabdi Sihem.
The Impact of Natural Antioxidants on the Regenerative Potential of
Vascular Cells. Frontiers in Cardiovascular Medicine, VOLUME 6, 2019,
PAGE 28. DOI: 10.3389/fcvm.2019.00028. ISSN=2297-055X.
(https://www.frontiersin.org/article/10.3389/fcvm.2019.00028)
(5) Hidalgo FJ, Zamora R. Food Processing Antioxidants. Adv Food Nutr
Res. 2017;81:31-64. doi: 10.1016/bs.afnr.2016.10.002. Epub 2016 Nov 30.
PMID: 28317608. (https://pubmed.ncbi.nlm.nih.gov/28317608/)
(6) Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K.
Reactive oxygen species – sources, functions, oxidative damage. Pol
Merkur Lekarski. 2020 Apr 22;48(284):124-127. PMID: 32352946.
(https://pubmed.ncbi.nlm.nih.gov/32352946/)
(7) Boveris A. Biochemistry of free radicals: from electrons to tissues.
Medicina (B Aires). 1998;58(4):350-6. PMID: 9816695.
(https://pubmed.ncbi.nlm.nih.gov/9816695/)
(8) Machlin LJ, Bendich A. Free radical tissue damage: protective role
of antioxidant nutrients. FASEB J. 1987 Dec;1(6):441-5. PMID: 3315807.
(https://pubmed.ncbi.nlm.nih.gov/3315807/)
(9) Preiser JC. Oxidative stress. JPEN J Parenter Enteral Nutr. 2012
Mar;36(2):147-54. doi: 10.1177/0148607111434963. Epub 2012 Feb 1. PMID:
22301329. (https://pubmed.ncbi.nlm.nih.gov/22301329/)
(10) Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D,
Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative
stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-772.
doi: 10.2147/CIA.S158513. PMID: 29731617; PMCID: PMC5927356.
(https://pubmed.ncbi.nlm.nih.gov/29731617/)
(11) Le Bras M, Clément MV, Pervaiz S, Brenner C. Reactive oxygen
species and the mitochondrial signaling pathway of cell death. Histol
Histopathol. 2005 Jan;20(1):205-19. doi: 10.14670/HH-20.205. PMID:
15578439. (https://pubmed.ncbi.nlm.nih.gov/15578439/)
(12) Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free
radicals and antioxidants in normal physiological functions and human
disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi:
10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4. PMID: 16978905.
(https://pubmed.ncbi.nlm.nih.gov/16978905/)
(13) Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Miñana JB, Pallardó
FV, Sastre J. Free radicals in exhaustive physical exercise: mechanism
of production, and protection by antioxidants. IUBMB Life. 2000
Oct-Nov;50(4-5):271-7. doi: 10.1080/713803729. PMID: 11327321.
(https://pubmed.ncbi.nlm.nih.gov/11327321/)
(14) Aseervatham GS, Sivasudha T, Jeyadevi R, Arul Ananth D.
Environmental factors and unhealthy lifestyle influence oxidative stress
in humans–an overview. Environ Sci Pollut Res Int. 2013
Jul;20(7):4356-69. doi: 10.1007/s11356-013-1748-0. Epub 2013 May 1.
PMID: 23636598. (https://pubmed.ncbi.nlm.nih.gov/23636598/)
(15) Ruzza P, Honisch C, Hussain R, Siligardi G. Free Radicals and ROS
Induce Protein Denaturation by UV Photostability Assay. Int J Mol Sci.
2021 Jun 17;22(12):6512. doi: 10.3390/ijms22126512. PMID: 34204483;
PMCID: PMC8234878. (https://pubmed.ncbi.nlm.nih.gov/34204483/)
(16) Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and
Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front
Pharmacol. 2018 Oct 16;9:1162. doi: 10.3389/fphar.2018.01162. PMID:
30405405; PMCID: PMC6204759.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204759/)
(17) Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P,
Berra B. Endogenous antioxidants and radical scavengers. Adv Exp Med
Biol. 2010;698:52-67. doi: 10.1007/978-1-4419-7347-4_5. PMID: 21520703.
(https://pubmed.ncbi.nlm.nih.gov/21520703/)
(18) Aguilar, Tomás & Navarro, Brenda & Mendoza Perez, Jorge
Alberto. (2016). Endogenous Antioxidants: A Review of their Role in
Oxidative Stress. 10.5772/65715.
(https://www.researchgate.net/publication/312277915_Endogenous_Antioxidants_A_Review_of_their_Role_in_Oxidative_Stress)
(19) Jo SM, Zhang KAI, Wurm FR, Landfester K. Mimic of the Cellular
Antioxidant Defense System for a Sustainable Regeneration of
Nicotinamide Adenine Dinucleotide (NAD). ACS Appl Mater Interfaces. 2020
Jun 10;12(23):25625-25632. doi: 10.1021/acsami.0c05588. Epub 2020 May
26. PMID: 32383848; PMCID: PMC7303963.
(https://pubmed.ncbi.nlm.nih.gov/32383848/)
(20) Littarru GP, Tiano L. Bioenergetic and antioxidant properties of
coenzyme Q10: recent developments. Mol Biotechnol. 2007 Sep;37(1):31-7.
doi: 10.1007/s12033-007-0052-y. PMID: 17914161.
(https://pubmed.ncbi.nlm.nih.gov/17914161/)
(21) Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants
and functional foods: Impact on human health. Pharmacogn Rev. 2010
Jul;4(8):118-26. doi: 10.4103/0973-7847.70902. PMID: 22228951; PMCID:
PMC3249911. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/)
(22) Ly CV, Verstreken P. Mitochondria at the synapse. Neuroscientist.
2006 Aug;12(4):291-9. doi: 10.1177/1073858406287661. PMID: 16840705.
(https://pubmed.ncbi.nlm.nih.gov/16840705/)
(23) Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester
F. Food Antioxidants and Their Anti-Inflammatory Properties: A
Potential Role in Cardiovascular Diseases and Cancer Prevention.
Diseases. 2016 Aug 1;4(3):28. doi: 10.3390/diseases4030028. PMID:
28933408; PMCID: PMC5456284.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456284/)
(24) Puertollano MA, Puertollano E, de Cienfuegos GÁ, de Pablo MA.
Dietary antioxidants: immunity and host defense. Curr Top Med Chem.
2011;11(14):1752-66. doi: 10.2174/156802611796235107. PMID: 21506934.
(https://pubmed.ncbi.nlm.nih.gov/21506934/)
(25) Jiménez-Fernández S, Gurpegui M, Díaz-Atienza F, Pérez-Costillas L,
Gerstenberg M, Correll CU. Oxidative stress and antioxidant parameters
in patients with major depressive disorder compared to healthy controls
before and after antidepressant treatment: results from a meta-analysis.
J Clin Psychiatry. 2015 Dec;76(12):1658-67. doi: 10.4088/JCP.14r09179.
PMID: 26579881. (https://pubmed.ncbi.nlm.nih.gov/26579881/)
(26) Peechakara BV, Gupta M. Vitamin B3. [Updated 2021 Jun 15]. In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;
(https://www.ncbi.nlm.nih.gov/books/NBK526107/)
(27) Kirkland JB. Niacin requirements for genomic stability. Mutat Res.
2012 May 1;733(1-2):14-20. doi: 10.1016/j.mrfmmm.2011.11.008. Epub 2011
Nov 28. PMID: 22138132. (https://pubmed.ncbi.nlm.nih.gov/22138132/)
(28) Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell
death: regulation and biological consequences. Antioxid Redox Signal.
2008 Feb;10(2):179-206. doi: 10.1089/ars.2007.1672. PMID: 18020963.
(https://pubmed.ncbi.nlm.nih.gov/18020963/)
(29) Kirkland JB, Meyer-Ficca ML. Niacin. Adv Food Nutr Res.
2018;83:83-149. doi: 10.1016/bs.afnr.2017.11.003. Epub 2018 Feb 1. PMID:
29477227. (https://pubmed.ncbi.nlm.nih.gov/29477227/)
(30) Singh R, Lemire J, Mailloux RJ, Appanna VD. A novel strategy
involved in [corrected] anti-oxidative defense: the conversion of NADH
into NADPH by a metabolic network. PLoS One. 2008 Jul 16;3(7):e2682.
doi: 10.1371/journal.pone.0002682. Erratum in: PLoS ONE. 2008;3(7). doi:
10.1371/annotation/5fac086b-3806-4aa9-a5c5-2611b3355f8f. PMID:
18628998; PMCID: PMC2443280. (https://pubmed.ncbi.nlm.nih.gov/18628998/)
(31) Yuan X, Liu Y, Bijonowski BM, Tsai AC, Fu Q, Logan TM, Ma T, Li Y.
NAD+/NADH redox alterations reconfigure metabolism and rejuvenate
senescent human mesenchymal stem cells in vitro. Commun Biol. 2020 Dec
15;3(1):774. doi: 10.1038/s42003-020-01514-y. PMID: 33319867; PMCID:
PMC7738682. (https://pubmed.ncbi.nlm.nih.gov/33319867/)
(32) Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central
Nervous System: An Update of Biological Aspects and Clinical
Applications. Int J Mol Sci. 2019 Feb 23;20(4):974. doi:
10.3390/ijms20040974. PMID: 30813414; PMCID: PMC6412771.
(https://pubmed.ncbi.nlm.nih.gov/30813414/)
(33) Braidy N, Liu Y. NAD+ therapy in age-related degenerative
disorders: A benefit/risk analysis. Exp Gerontol. 2020 Apr;132:110831.
doi: 10.1016/j.exger.2020.110831. Epub 2020 Jan 7. PMID: 31917996.
(https://pubmed.ncbi.nlm.nih.gov/31917996/)
(34) Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg
H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade
EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL,
Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a
senotherapeutic that extends health and lifespan. EBioMedicine. 2018
Oct;36:18-28. doi: 10.1016/j.ebiom.2018.09.015. Epub 2018 Sep 29. PMID:
30279143; PMCID: PMC6197652. (https://pubmed.ncbi.nlm.nih.gov/30279143/)
(35) Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr
Sci. 2016 Dec 29;5:e47. doi: 10.1017/jns.2016.41. PMID: 28620474; PMCID:
PMC5465813. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465813/)
(36) Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to
translation. J Intern Med. 2020 Nov;288(5):518-536. doi:
10.1111/joim.13141. Epub 2020 Aug 4. PMID: 32686219; PMCID: PMC7405395.
(https://pubmed.ncbi.nlm.nih.gov/32686219/)
(37) Regulski MJ. Cellular Senescence: What, Why, and How. Wounds. 2017
Jun;29(6):168-174. PMID: 28682291.
(https://pubmed.ncbi.nlm.nih.gov/28682291/)
(38) Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks
during cellular senescence: causes and consequences. Trends Mol Med.
2010 May;16(5):238-46. doi: 10.1016/j.molmed.2010.03.003. Epub 2010 May
3. PMID: 20444648; PMCID: PMC2879478.
(https://pubmed.ncbi.nlm.nih.gov/20444648/)
(39) Tasdemir N, Lowe SW. Senescent cells spread the word: non-cell
autonomous propagation of cellular senescence. EMBO J. 2013 Jul
17;32(14):1975-6. doi: 10.1038/emboj.2013.139. Epub 2013 Jun 18. PMID:
23778965; PMCID: PMC3715860.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715860/)
(40) Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming
QL, Liu CM. Fisetin improves lead-induced neuroinflammation, apoptosis
and synaptic dysfunction in mice associated with the AMPK/SIRT1 and
autophagy pathway. Food Chem Toxicol. 2019 Dec;134:110824. doi:
10.1016/j.fct.2019.110824. Epub 2019 Sep 17. PMID: 31539617.
(https://pubmed.ncbi.nlm.nih.gov/31539617/)
(41) Pal HC, Pearlman RL, Afaq F. Fisetin and Its Role in Chronic
Diseases. Adv Exp Med Biol. 2016;928:213-244. doi:
10.1007/978-3-319-41334-1_10. PMID: 27671819.
(https://pubmed.ncbi.nlm.nih.gov/27671819/)
(42) Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician. 2003 Oct
15;68(8):1539-42. PMID: 14596440.
(https://pubmed.ncbi.nlm.nih.gov/14596440/)
(43) Liu CX, Xiao PG. Recent advances on ginseng research in China. J
Ethnopharmacol. 1992 Feb;36(1):27-38. doi: 10.1016/0378-8741(92)90057-x.
PMID: 1501490. (https://pubmed.ncbi.nlm.nih.gov/1501490/)
(44) Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main
active components of Panax ginseng, in inflammatory responses and
diseases. J Ginseng Res. 2017 Oct;41(4):435-443. doi:
10.1016/j.jgr.2016.08.004. Epub 2016 Aug 18. PMID: 29021688; PMCID:
PMC5628327. (https://pubmed.ncbi.nlm.nih.gov/29021688/)
(45) Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient
use of ginseng in traditional Chinese medicine with modern
pharmacological experiments and clinical trials. Phytother Res. 2008
Jul;22(7):851-8. doi: 10.1002/ptr.2384. PMID: 18567057.
(https://pubmed.ncbi.nlm.nih.gov/18567057/)
(46) Kang S, Min H. Ginseng, the ‘Immunity Boost’: The Effects of Panax
ginseng on Immune System. J Ginseng Res. 2012 Oct;36(4):354-68. doi:
10.5142/jgr.2012.36.4.354. PMID: 23717137; PMCID: PMC3659612.
(https://pubmed.ncbi.nlm.nih.gov/23717137/)
(47) Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a Treatment
for Fatigue: A Systematic Review. J Altern Complement Med. 2018
Jul;24(7):624-633. doi: 10.1089/acm.2017.0361. Epub 2018 Apr 6. PMID:
29624410. (https://pubmed.ncbi.nlm.nih.gov/29624410/)
(48) Green tea. Altern Med Rev. 2000 Aug;5(4):372-5. PMID: 10956382. (https://pubmed.ncbi.nlm.nih.gov/10956382/)
(49) Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea–a
review. J Am Coll Nutr. 2006 Apr;25(2):79-99. doi:
10.1080/07315724.2006.10719518. PMID: 16582024.
(https://pubmed.ncbi.nlm.nih.gov/16582024/)
(50) Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial
Properties of Green Tea Catechins. Int J Mol Sci. 2020 Mar 4;21(5):1744.
doi: 10.3390/ijms21051744. PMID: 32143309; PMCID: PMC7084675.
(https://pubmed.ncbi.nlm.nih.gov/32143309/)
(51) Jochmann N, Baumann G, Stangl V. Green tea and cardiovascular
disease: from molecular targets towards human health. Curr Opin Clin
Nutr Metab Care. 2008 Nov;11(6):758-65. doi:
10.1097/MCO.0b013e328314b68b. PMID: 18827581.
(https://pubmed.ncbi.nlm.nih.gov/18827581/)
(52) Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green
tea on blood pressure and lipid profile: a systematic review and
meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis.
2014 Aug;24(8):823-36. doi: 10.1016/j.numecd.2014.01.016. Epub 2014 Jan
31. PMID: 24675010. (https://pubmed.ncbi.nlm.nih.gov/24675010/)
(53) Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of
the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress
Resistance, Neuroprotection, and Autophagy. Nutrients. 2019 Feb
23;11(2):474. doi: 10.3390/nu11020474. PMID: 30813433; PMCID:
PMC6412948. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412948/)
(54) Mirastschijski U, Lupše B, Maedler K, Sarma B, Radtke A, Belge G,
Dorsch M, Wedekind D, McCawley LJ, Boehm G, Zier U, Yamamoto K, Kelm S,
Ågren MS. Matrix Metalloproteinase-3 is Key Effector of TNF-α-Induced
Collagen Degradation in Skin. Int J Mol Sci. 2019 Oct 22;20(20):5234.
doi: 10.3390/ijms20205234. PMID: 31652545; PMCID: PMC6829232.
(https://pubmed.ncbi.nlm.nih.gov/31652545/)
(55) Lee KO, Kim SN, Kim YC. Anti-wrinkle Effects of Water Extracts of
Teas in Hairless Mouse. Toxicol Res. 2014 Dec;30(4):283-9. doi:
10.5487/TR.2014.30.4.283. PMID: 25584148; PMCID: PMC4289929.
(https://pubmed.ncbi.nlm.nih.gov/25584148/)
(56) Lecour S, Lamont KT. Natural polyphenols and cardioprotection. Mini
Rev Med Chem. 2011 Dec;11(14):1191-9. doi: 10.2174/13895575111091191.
PMID: 22070680. (https://pubmed.ncbi.nlm.nih.gov/22070680/)
(57) Fraga CG, Galleano M, Verstraeten SV, Oteiza PI. Basic biochemical
mechanisms behind the health benefits of polyphenols. Mol Aspects Med.
2010 Dec;31(6):435-45. doi: 10.1016/j.mam.2010.09.006. Epub 2010 Sep 18.
PMID: 20854840. (https://pubmed.ncbi.nlm.nih.gov/20854840/)
(58) Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The Role of
Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr.
2018 Sep 21;5:87. doi: 10.3389/fnut.2018.00087. PMID: 30298133; PMCID:
PMC6160559. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160559/)
(59) Ulusoy HG, Sanlier N. A minireview of quercetin: from its
metabolism to possible mechanisms of its biological activities. Crit Rev
Food Sci Nutr. 2020;60(19):3290-3303. doi:
10.1080/10408398.2019.1683810. Epub 2019 Nov 4. PMID: 31680558.
(https://pubmed.ncbi.nlm.nih.gov/31680558/)
(60) Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological
Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016
Jul-Dec;10(20):84-89. doi: 10.4103/0973-7847.194044. PMID: 28082789;
PMCID: PMC5214562.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214562/)
(61) Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA,
Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F,
Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New
Insights and Perspectives for Human Health. ACS Omega. 2020 May
14;5(20):11849-11872. doi: 10.1021/acsomega.0c01818. PMID: 32478277;
PMCID: PMC7254783.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254783/)
(62) Malavolta M, Pierpaoli E, Giacconi R, Costarelli L, Piacenza F,
Basso A, Cardelli M, Provinciali M. Pleiotropic Effects of Tocotrienols
and Quercetin on Cellular Senescence: Introducing the Perspective of
Senolytic Effects of Phytochemicals. Curr Drug Targets.
2016;17(4):447-59. doi: 10.2174/1389450116666150907105104. PMID:
26343116. (https://pubmed.ncbi.nlm.nih.gov/26343116/)
(63) Li C, Schluesener H. Health-promoting effects of the citrus
flavanone hesperidin. Crit Rev Food Sci Nutr. 2017 Feb 11;57(3):613-631.
doi: 10.1080/10408398.2014.906382. PMID: 25675136.
(https://pubmed.ncbi.nlm.nih.gov/25675136/)
(64) Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of
hesperidin in central nervous system disorders: a review. Anat Cell
Biol. 2019 Dec;52(4):369-377. doi: 10.5115/acb.19.119. Epub 2019 Dec 31.
PMID: 31949974; PMCID: PMC6952680.
(https://pubmed.ncbi.nlm.nih.gov/31949974/)
(65) Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S,
Zandi K. A review on antibacterial, antiviral, and antifungal activity
of curcumin. Biomed Res Int. 2014;2014:186864. doi: 10.1155/2014/186864.
Epub 2014 Apr 29. PMID: 24877064; PMCID: PMC4022204.
(https://pubmed.ncbi.nlm.nih.gov/24877064/)
(66) Sarkar A, De R, Mukhopadhyay AK. Curcumin as a potential
therapeutic candidate for Helicobacter pylori associated diseases. World
J Gastroenterol. 2016 Mar 7;22(9):2736-48. doi:
10.3748/wjg.v22.i9.2736. PMID: 26973412; PMCID: PMC4777996.
(https://pubmed.ncbi.nlm.nih.gov/26973412/)
(67) Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial Action of
Curcumin against Staphylococcus aureus: A Brief Review. J Trop Med.
2016;2016:2853045. doi: 10.1155/2016/2853045. Epub 2016 Nov 13. PMID:
27956904; PMCID: PMC5124450. (https://pubmed.ncbi.nlm.nih.gov/27956904/)
(67) Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial Action of
Curcumin against Staphylococcus aureus: A Brief Review. J Trop Med.
2016;2016:2853045. doi: 10.1155/2016/2853045. Epub 2016 Nov 13. PMID:
27956904; PMCID: PMC5124450. (https://pubmed.ncbi.nlm.nih.gov/27956904/)
(68) Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN,
Sivamani RK. Effects of Turmeric and Curcumin Dietary Supplementation on
Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled
Pilot Study. J Evid Based Integr Med. 2018 Jan-Dec;23:2515690X18790725.
doi: 10.1177/2515690X18790725. PMID: 30088420; PMCID: PMC6083746.
(https://pubmed.ncbi.nlm.nih.gov/30088420/)
(69) Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian
solid gold. Adv Exp Med Biol. 2007;595:1-75. doi:
10.1007/978-0-387-46401-5_1. PMID: 17569205.
(https://pubmed.ncbi.nlm.nih.gov/17569205/)
(70) Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery,
bioavailability, absorption and metabolism of curcumin: the golden
pigment from golden spice. Cancer Res Treat. 2014 Jan;46(1):2-18. doi:
10.4143/crt.2014.46.1.2. Epub 2014 Jan 15. PMID: 24520218; PMCID:
PMC3918523. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918523/)
(71) Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS.
Influence of piperine on the pharmacokinetics of curcumin in animals and
human volunteers. Planta Med. 1998 May;64(4):353-6. doi:
10.1055/s-2006-957450. PMID: 9619120.
(https://pubmed.ncbi.nlm.nih.gov/9619120/)
(72) Shah MM, Liang Y, Cheng JJ, Daroch M. Astaxanthin-Producing Green
Microalga Haematococcus pluvialis: From Single Cell to High Value
Commercial Products. Front Plant Sci. 2016 Apr 28;7:531. doi:
10.3389/fpls.2016.00531. PMID: 27200009; PMCID: PMC4848535.
(https://pubmed.ncbi.nlm.nih.gov/27200009/)
(73) Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical
benefits and anti-aging potential. Altern Med Rev. 2011
Dec;16(4):355-64. PMID: 22214255.
(https://pubmed.ncbi.nlm.nih.gov/22214255/)
(74) Wong SK, Ima-Nirwana S, Chin KY. Effects of astaxanthin on the
protection of muscle health (Review). Exp Ther Med. 2020
Oct;20(4):2941-2952. doi: 10.3892/etm.2020.9075. Epub 2020 Jul 29. PMID:
32855659; PMCID: PMC7444411.
(https://pubmed.ncbi.nlm.nih.gov/32855659/)
(75) Ng QX, De Deyn MLZQ, Loke W, Foo NX, Chan HW, Yeo WS. Effects of
Astaxanthin Supplementation on Skin Health: A Systematic Review of
Clinical Studies. J Diet Suppl. 2021;18(2):169-182. doi:
10.1080/19390211.2020.1739187. Epub 2020 Mar 23. PMID: 32202443.
(https://pubmed.ncbi.nlm.nih.gov/32202443/)
(76) Peng YJ, Lu JW, Liu FC, Lee CH, Lee HS, Ho YJ, Hsieh TH, Wu CC,
Wang CC. Astaxanthin attenuates joint inflammation induced by monosodium
urate crystals. FASEB J. 2020 Aug;34(8):11215-11226. doi:
10.1096/fj.202000558RR. Epub 2020 Jul 10. PMID: 32648603.
(https://pubmed.ncbi.nlm.nih.gov/32648603/)
(77) Estévez-Santiago R, Olmedilla-Alonso B, Beltrán-de-Miguel B,
Cuadrado-Vives C. Lutein and zeaxanthin supplied by red/orange foods and
fruits are more closely associated with macular pigment optical density
than those from green vegetables in Spanish subjects. Nutr Res. 2016
Nov;36(11):1210-1221. doi: 10.1016/j.nutres.2016.09.007. Epub 2016 Sep
14. PMID: 27866829. (https://pubmed.ncbi.nlm.nih.gov/27866829/)
(78) Obana A, Gohto Y, Nakazawa R, Moriyama T, Gellermann W, Bernstein
PS. Effect of an antioxidant supplement containing high dose lutein and
zeaxanthin on macular pigment and skin carotenoid levels. Sci Rep. 2020
Jun 24;10(1):10262. doi: 10.1038/s41598-020-66962-2. PMID: 32581313;
PMCID: PMC7314813. (https://pubmed.ncbi.nlm.nih.gov/32581313/)
(79) Jia YP, Sun L, Yu HS, Liang LP, Li W, Ding H, Song XB, Zhang LJ.
The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders
and Cognition Diseases. Molecules. 2017 Apr 20;22(4):610. doi:
10.3390/molecules22040610. PMID: 28425969; PMCID: PMC6154331.
(https://pubmed.ncbi.nlm.nih.gov/28425969/)
(80) Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini
G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients. 2018 Sep
18;10(9):1321. doi: 10.3390/nu10091321. PMID: 30231532; PMCID:
PMC6164534. (https://pubmed.ncbi.nlm.nih.gov/30231532/)
(81) Leermakers ET, Darweesh SK, Baena CP, Moreira EM, Melo van Lent D,
Tielemans MJ, Muka T, Vitezova A, Chowdhury R, Bramer WM, Kiefte-de Jong
JC, Felix JF, Franco OH. The effects of lutein on cardiometabolic
health across the life course: a systematic review and meta-analysis. Am
J Clin Nutr. 2016 Feb;103(2):481-94. doi: 10.3945/ajcn.115.120931. Epub
2016 Jan 13. PMID: 26762372.
(https://pubmed.ncbi.nlm.nih.gov/26762372/)
(82) Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French
paradox for coronary heart disease. Lancet. 1992 Jun
20;339(8808):1523-6. doi: 10.1016/0140-6736(92)91277-f. PMID: 1351198.
(https://pubmed.ncbi.nlm.nih.gov/1351198/)
(83) Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination
in whole grape, for health promotion and disease management. Ann N Y
Acad Sci. 2015 Aug;1348(1):150-60. doi: 10.1111/nyas.12798. Epub 2015
Jun 22. PMID: 26099945; PMCID: PMC4553113.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553113/)
(84) Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L,
Cellerino A. Resveratrol prolongs lifespan and retards the onset of
age-related markers in a short-lived vertebrate. Curr Biol. 2006 Feb
7;16(3):296-300. doi: 10.1016/j.cub.2005.12.038. PMID: 16461283.
(https://pubmed.ncbi.nlm.nih.gov/16461283/)
(85) Valenzano DR, Cellerino A. Resveratrol and the pharmacology of
aging: a new vertebrate model to validate an old molecule. Cell Cycle.
2006 May;5(10):1027-32. doi: 10.4161/cc.5.10.2739. Epub 2006 May 15.
PMID: 16687936. (https://pubmed.ncbi.nlm.nih.gov/16687936/)
(86) Semba RD, Ferrucci L, Bartali B, Urpí-Sarda M, Zamora-Ros R, Sun K,
Cherubini A, Bandinelli S, Andres-Lacueva C. Resveratrol levels and
all-cause mortality in older community-dwelling adults. JAMA Intern Med.
2014 Jul;174(7):1077-84. doi: 10.1001/jamainternmed.2014.1582. PMID:
24819981; PMCID: PMC4346286.
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346286/)
(87) Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of
resveratrol administration. Acta Biochim Pol. 2019 Feb 28;66(1):13-21.
doi: 10.18388/abp.2018_2749. PMID: 30816367.
(https://pubmed.ncbi.nlm.nih.gov/30816367/)
(88) Sochorova L, Prusova B, Cebova M, Jurikova T, Mlcek J, Adamkova A,
Nedomova S, Baron M, Sochor J. Health Effects of Grape Seed and Skin
Extracts and Their Influence on Biochemical Markers. Molecules. 2020 Nov
14;25(22):5311. doi: 10.3390/molecules25225311. PMID: 33202575; PMCID:
PMC7696942. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696942/)
(89) Asbaghi O, Nazarian B, Reiner Ž, Amirani E, Kolahdooz F, Chamani M,
Asemi Z. The effects of grape seed extract on glycemic control, serum
lipoproteins, inflammation, and body weight: A systematic review and
meta-analysis of randomized controlled trials. Phytother Res. 2020
Feb;34(2):239-253. doi: 10.1002/ptr.6518. Epub 2019 Dec 26. PMID:
31880030. (https://pubmed.ncbi.nlm.nih.gov/31880030/)
(90) Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich
Grape Seed Extract Reduces Inflammation and Oxidative Stress and
Restores Tight Junction Barrier Function in Caco-2 Colon Cells.
Nutrients. 2020 Jun 1;12(6):1623. doi: 10.3390/nu12061623. PMID:
32492806; PMCID: PMC7352846. (https://pubmed.ncbi.nlm.nih.gov/32492806/)
(91) Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed
extract: having a potential health benefits. J Food Sci Technol. 2020
Apr;57(4):1205-1215. doi: 10.1007/s13197-019-04113-w. Epub 2019 Sep 30.
PMID: 32180617; PMCID: PMC7054588.
(https://pubmed.ncbi.nlm.nih.gov/32180617/)