Zell Up 15

(1) Ferber SG, Namdar D, Hen-Shoval D, Eger G, Koltai H, Shoval G, Shbiro L, Weller A. The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr Neuropharmacol. 2020;18(2):87-96. doi: 10.2174/1570159X17666190903103923. PMID: 31481004; PMCID: PMC7324885. (https://pubmed.ncbi.nlm.nih.gov/31481004/)
(2) Bautista JL, Yu S, Tian L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega. 2021 Feb 18;6(8):5119-5123. doi: 10.1021/acsomega.1c00318. PMID: 33681553; PMCID: PMC7931196. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931196/)

(3) Russo EB. The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain. Front Plant Sci. 2019 Jan 9;9:1969. doi: 10.3389/fpls.2018.01969. PMID: 30687364; PMCID: PMC6334252. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334252/)

(4) Shafi Shahida, Ansari Hifzur Rahman, Bahitham Wesam, Aouabdi Sihem. The Impact of Natural Antioxidants on the Regenerative Potential of Vascular Cells. Frontiers in Cardiovascular Medicine, VOLUME 6, 2019, PAGE 28. DOI: 10.3389/fcvm.2019.00028. ISSN=2297-055X. (https://www.frontiersin.org/article/10.3389/fcvm.2019.00028)

(5) Hidalgo FJ, Zamora R. Food Processing Antioxidants. Adv Food Nutr Res. 2017;81:31-64. doi: 10.1016/bs.afnr.2016.10.002. Epub 2016 Nov 30. PMID: 28317608. (https://pubmed.ncbi.nlm.nih.gov/28317608/)

(6) Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species – sources, functions, oxidative damage. Pol Merkur Lekarski. 2020 Apr 22;48(284):124-127. PMID: 32352946. (https://pubmed.ncbi.nlm.nih.gov/32352946/)

(7) Boveris A. Biochemistry of free radicals: from electrons to tissues. Medicina (B Aires). 1998;58(4):350-6. PMID: 9816695. (https://pubmed.ncbi.nlm.nih.gov/9816695/)

(8) Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987 Dec;1(6):441-5. PMID: 3315807. (https://pubmed.ncbi.nlm.nih.gov/3315807/)

(9) Preiser JC. Oxidative stress. JPEN J Parenter Enteral Nutr. 2012 Mar;36(2):147-54. doi: 10.1177/0148607111434963. Epub 2012 Feb 1. PMID: 22301329. (https://pubmed.ncbi.nlm.nih.gov/22301329/)

(10) Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-772. doi: 10.2147/CIA.S158513. PMID: 29731617; PMCID: PMC5927356. (https://pubmed.ncbi.nlm.nih.gov/29731617/)

(11) Le Bras M, Clément MV, Pervaiz S, Brenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol. 2005 Jan;20(1):205-19. doi: 10.14670/HH-20.205. PMID: 15578439. (https://pubmed.ncbi.nlm.nih.gov/15578439/)

(12) Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4. PMID: 16978905. (https://pubmed.ncbi.nlm.nih.gov/16978905/)

(13) Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Miñana JB, Pallardó FV, Sastre J. Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life. 2000 Oct-Nov;50(4-5):271-7. doi: 10.1080/713803729. PMID: 11327321. (https://pubmed.ncbi.nlm.nih.gov/11327321/)

(14) Aseervatham GS, Sivasudha T, Jeyadevi R, Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans–an overview. Environ Sci Pollut Res Int. 2013 Jul;20(7):4356-69. doi: 10.1007/s11356-013-1748-0. Epub 2013 May 1. PMID: 23636598. (https://pubmed.ncbi.nlm.nih.gov/23636598/)

(15) Ruzza P, Honisch C, Hussain R, Siligardi G. Free Radicals and ROS Induce Protein Denaturation by UV Photostability Assay. Int J Mol Sci. 2021 Jun 17;22(12):6512. doi: 10.3390/ijms22126512. PMID: 34204483; PMCID: PMC8234878. (https://pubmed.ncbi.nlm.nih.gov/34204483/)

(16) Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018 Oct 16;9:1162. doi: 10.3389/fphar.2018.01162. PMID: 30405405; PMCID: PMC6204759. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204759/)

(17) Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, Berra B. Endogenous antioxidants and radical scavengers. Adv Exp Med Biol. 2010;698:52-67. doi: 10.1007/978-1-4419-7347-4_5. PMID: 21520703. (https://pubmed.ncbi.nlm.nih.gov/21520703/)

(18) Aguilar, Tomás & Navarro, Brenda & Mendoza Perez, Jorge Alberto. (2016). Endogenous Antioxidants: A Review of their Role in Oxidative Stress. 10.5772/65715. (https://www.researchgate.net/publication/312277915_Endogenous_Antioxidants_A_Review_of_their_Role_in_Oxidative_Stress)

(19) Jo SM, Zhang KAI, Wurm FR, Landfester K. Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD). ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25625-25632. doi: 10.1021/acsami.0c05588. Epub 2020 May 26. PMID: 32383848; PMCID: PMC7303963. (https://pubmed.ncbi.nlm.nih.gov/32383848/)

(20) Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007 Sep;37(1):31-7. doi: 10.1007/s12033-007-0052-y. PMID: 17914161. (https://pubmed.ncbi.nlm.nih.gov/17914161/)

(21) Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-26. doi: 10.4103/0973-7847.70902. PMID: 22228951; PMCID: PMC3249911. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249911/)

(22) Ly CV, Verstreken P. Mitochondria at the synapse. Neuroscientist. 2006 Aug;12(4):291-9. doi: 10.1177/1073858406287661. PMID: 16840705. (https://pubmed.ncbi.nlm.nih.gov/16840705/)

(23) Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester F. Food Antioxidants and Their Anti-Inflammatory Properties: A Potential Role in Cardiovascular Diseases and Cancer Prevention. Diseases. 2016 Aug 1;4(3):28. doi: 10.3390/diseases4030028. PMID: 28933408; PMCID: PMC5456284. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456284/)

(24) Puertollano MA, Puertollano E, de Cienfuegos GÁ, de Pablo MA. Dietary antioxidants: immunity and host defense. Curr Top Med Chem. 2011;11(14):1752-66. doi: 10.2174/156802611796235107. PMID: 21506934. (https://pubmed.ncbi.nlm.nih.gov/21506934/)

(25) Jiménez-Fernández S, Gurpegui M, Díaz-Atienza F, Pérez-Costillas L, Gerstenberg M, Correll CU. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry. 2015 Dec;76(12):1658-67. doi: 10.4088/JCP.14r09179. PMID: 26579881. (https://pubmed.ncbi.nlm.nih.gov/26579881/)

(26) Peechakara BV, Gupta M. Vitamin B3. [Updated 2021 Jun 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; (https://www.ncbi.nlm.nih.gov/books/NBK526107/)

(27) Kirkland JB. Niacin requirements for genomic stability. Mutat Res. 2012 May 1;733(1-2):14-20. doi: 10.1016/j.mrfmmm.2011.11.008. Epub 2011 Nov 28. PMID: 22138132. (https://pubmed.ncbi.nlm.nih.gov/22138132/)

(28) Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008 Feb;10(2):179-206. doi: 10.1089/ars.2007.1672. PMID: 18020963. (https://pubmed.ncbi.nlm.nih.gov/18020963/)

(29) Kirkland JB, Meyer-Ficca ML. Niacin. Adv Food Nutr Res. 2018;83:83-149. doi: 10.1016/bs.afnr.2017.11.003. Epub 2018 Feb 1. PMID: 29477227. (https://pubmed.ncbi.nlm.nih.gov/29477227/)

(30) Singh R, Lemire J, Mailloux RJ, Appanna VD. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One. 2008 Jul 16;3(7):e2682. doi: 10.1371/journal.pone.0002682. Erratum in: PLoS ONE. 2008;3(7). doi: 10.1371/annotation/5fac086b-3806-4aa9-a5c5-2611b3355f8f. PMID: 18628998; PMCID: PMC2443280. (https://pubmed.ncbi.nlm.nih.gov/18628998/)

(31) Yuan X, Liu Y, Bijonowski BM, Tsai AC, Fu Q, Logan TM, Ma T, Li Y. NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol. 2020 Dec 15;3(1):774. doi: 10.1038/s42003-020-01514-y. PMID: 33319867; PMCID: PMC7738682. (https://pubmed.ncbi.nlm.nih.gov/33319867/)

(32) Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci. 2019 Feb 23;20(4):974. doi: 10.3390/ijms20040974. PMID: 30813414; PMCID: PMC6412771. (https://pubmed.ncbi.nlm.nih.gov/30813414/)

(33) Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol. 2020 Apr;132:110831. doi: 10.1016/j.exger.2020.110831. Epub 2020 Jan 7. PMID: 31917996. (https://pubmed.ncbi.nlm.nih.gov/31917996/)

(34) Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018 Oct;36:18-28. doi: 10.1016/j.ebiom.2018.09.015. Epub 2018 Sep 29. PMID: 30279143; PMCID: PMC6197652. (https://pubmed.ncbi.nlm.nih.gov/30279143/)

(35) Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016 Dec 29;5:e47. doi: 10.1017/jns.2016.41. PMID: 28620474; PMCID: PMC5465813. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465813/)

(36) Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020 Nov;288(5):518-536. doi: 10.1111/joim.13141. Epub 2020 Aug 4. PMID: 32686219; PMCID: PMC7405395. (https://pubmed.ncbi.nlm.nih.gov/32686219/)

(37) Regulski MJ. Cellular Senescence: What, Why, and How. Wounds. 2017 Jun;29(6):168-174. PMID: 28682291. (https://pubmed.ncbi.nlm.nih.gov/28682291/)

(38) Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010 May;16(5):238-46. doi: 10.1016/j.molmed.2010.03.003. Epub 2010 May 3. PMID: 20444648; PMCID: PMC2879478. (https://pubmed.ncbi.nlm.nih.gov/20444648/)

(39) Tasdemir N, Lowe SW. Senescent cells spread the word: non-cell autonomous propagation of cellular senescence. EMBO J. 2013 Jul 17;32(14):1975-6. doi: 10.1038/emboj.2013.139. Epub 2013 Jun 18. PMID: 23778965; PMCID: PMC3715860. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715860/)

(40) Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming QL, Liu CM. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol. 2019 Dec;134:110824. doi: 10.1016/j.fct.2019.110824. Epub 2019 Sep 17. PMID: 31539617. (https://pubmed.ncbi.nlm.nih.gov/31539617/)

(41) Pal HC, Pearlman RL, Afaq F. Fisetin and Its Role in Chronic Diseases. Adv Exp Med Biol. 2016;928:213-244. doi: 10.1007/978-3-319-41334-1_10. PMID: 27671819. (https://pubmed.ncbi.nlm.nih.gov/27671819/)

(42) Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician. 2003 Oct 15;68(8):1539-42. PMID: 14596440. (https://pubmed.ncbi.nlm.nih.gov/14596440/)

(43) Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol. 1992 Feb;36(1):27-38. doi: 10.1016/0378-8741(92)90057-x. PMID: 1501490. (https://pubmed.ncbi.nlm.nih.gov/1501490/)

(44) Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017 Oct;41(4):435-443. doi: 10.1016/j.jgr.2016.08.004. Epub 2016 Aug 18. PMID: 29021688; PMCID: PMC5628327. (https://pubmed.ncbi.nlm.nih.gov/29021688/)

(45) Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res. 2008 Jul;22(7):851-8. doi: 10.1002/ptr.2384. PMID: 18567057. (https://pubmed.ncbi.nlm.nih.gov/18567057/)

(46) Kang S, Min H. Ginseng, the ‘Immunity Boost’: The Effects of Panax ginseng on Immune System. J Ginseng Res. 2012 Oct;36(4):354-68. doi: 10.5142/jgr.2012.36.4.354. PMID: 23717137; PMCID: PMC3659612. (https://pubmed.ncbi.nlm.nih.gov/23717137/)

(47) Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a Treatment for Fatigue: A Systematic Review. J Altern Complement Med. 2018 Jul;24(7):624-633. doi: 10.1089/acm.2017.0361. Epub 2018 Apr 6. PMID: 29624410. (https://pubmed.ncbi.nlm.nih.gov/29624410/)

(48) Green tea. Altern Med Rev. 2000 Aug;5(4):372-5. PMID: 10956382. (https://pubmed.ncbi.nlm.nih.gov/10956382/)

(49) Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea–a review. J Am Coll Nutr. 2006 Apr;25(2):79-99. doi: 10.1080/07315724.2006.10719518. PMID: 16582024. (https://pubmed.ncbi.nlm.nih.gov/16582024/)

(50) Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci. 2020 Mar 4;21(5):1744. doi: 10.3390/ijms21051744. PMID: 32143309; PMCID: PMC7084675. (https://pubmed.ncbi.nlm.nih.gov/32143309/)

(51) Jochmann N, Baumann G, Stangl V. Green tea and cardiovascular disease: from molecular targets towards human health. Curr Opin Clin Nutr Metab Care. 2008 Nov;11(6):758-65. doi: 10.1097/MCO.0b013e328314b68b. PMID: 18827581. (https://pubmed.ncbi.nlm.nih.gov/18827581/)

(52) Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014 Aug;24(8):823-36. doi: 10.1016/j.numecd.2014.01.016. Epub 2014 Jan 31. PMID: 24675010. (https://pubmed.ncbi.nlm.nih.gov/24675010/)

(53) Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019 Feb 23;11(2):474. doi: 10.3390/nu11020474. PMID: 30813433; PMCID: PMC6412948. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412948/)

(54) Mirastschijski U, Lupše B, Maedler K, Sarma B, Radtke A, Belge G, Dorsch M, Wedekind D, McCawley LJ, Boehm G, Zier U, Yamamoto K, Kelm S, Ågren MS. Matrix Metalloproteinase-3 is Key Effector of TNF-α-Induced Collagen Degradation in Skin. Int J Mol Sci. 2019 Oct 22;20(20):5234. doi: 10.3390/ijms20205234. PMID: 31652545; PMCID: PMC6829232. (https://pubmed.ncbi.nlm.nih.gov/31652545/)

(55) Lee KO, Kim SN, Kim YC. Anti-wrinkle Effects of Water Extracts of Teas in Hairless Mouse. Toxicol Res. 2014 Dec;30(4):283-9. doi: 10.5487/TR.2014.30.4.283. PMID: 25584148; PMCID: PMC4289929. (https://pubmed.ncbi.nlm.nih.gov/25584148/)

(56) Lecour S, Lamont KT. Natural polyphenols and cardioprotection. Mini Rev Med Chem. 2011 Dec;11(14):1191-9. doi: 10.2174/13895575111091191. PMID: 22070680. (https://pubmed.ncbi.nlm.nih.gov/22070680/)

(57) Fraga CG, Galleano M, Verstraeten SV, Oteiza PI. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med. 2010 Dec;31(6):435-45. doi: 10.1016/j.mam.2010.09.006. Epub 2010 Sep 18. PMID: 20854840. (https://pubmed.ncbi.nlm.nih.gov/20854840/)

(58) Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr. 2018 Sep 21;5:87. doi: 10.3389/fnut.2018.00087. PMID: 30298133; PMCID: PMC6160559. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160559/)

(59) Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr. 2020;60(19):3290-3303. doi: 10.1080/10408398.2019.1683810. Epub 2019 Nov 4. PMID: 31680558. (https://pubmed.ncbi.nlm.nih.gov/31680558/)

(60) Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016 Jul-Dec;10(20):84-89. doi: 10.4103/0973-7847.194044. PMID: 28082789; PMCID: PMC5214562. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214562/)

(61) Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020 May 14;5(20):11849-11872. doi: 10.1021/acsomega.0c01818. PMID: 32478277; PMCID: PMC7254783. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254783/)

(62) Malavolta M, Pierpaoli E, Giacconi R, Costarelli L, Piacenza F, Basso A, Cardelli M, Provinciali M. Pleiotropic Effects of Tocotrienols and Quercetin on Cellular Senescence: Introducing the Perspective of Senolytic Effects of Phytochemicals. Curr Drug Targets. 2016;17(4):447-59. doi: 10.2174/1389450116666150907105104. PMID: 26343116. (https://pubmed.ncbi.nlm.nih.gov/26343116/)

(63) Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr. 2017 Feb 11;57(3):613-631. doi: 10.1080/10408398.2014.906382. PMID: 25675136. (https://pubmed.ncbi.nlm.nih.gov/25675136/)

(64) Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: a review. Anat Cell Biol. 2019 Dec;52(4):369-377. doi: 10.5115/acb.19.119. Epub 2019 Dec 31. PMID: 31949974; PMCID: PMC6952680. (https://pubmed.ncbi.nlm.nih.gov/31949974/)

(65) Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:186864. doi: 10.1155/2014/186864. Epub 2014 Apr 29. PMID: 24877064; PMCID: PMC4022204. (https://pubmed.ncbi.nlm.nih.gov/24877064/)

(66) Sarkar A, De R, Mukhopadhyay AK. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J Gastroenterol. 2016 Mar 7;22(9):2736-48. doi: 10.3748/wjg.v22.i9.2736. PMID: 26973412; PMCID: PMC4777996. (https://pubmed.ncbi.nlm.nih.gov/26973412/)

(67) Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial Action of Curcumin against Staphylococcus aureus: A Brief Review. J Trop Med. 2016;2016:2853045. doi: 10.1155/2016/2853045. Epub 2016 Nov 13. PMID: 27956904; PMCID: PMC5124450. (https://pubmed.ncbi.nlm.nih.gov/27956904/)

(67) Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial Action of Curcumin against Staphylococcus aureus: A Brief Review. J Trop Med. 2016;2016:2853045. doi: 10.1155/2016/2853045. Epub 2016 Nov 13. PMID: 27956904; PMCID: PMC5124450. (https://pubmed.ncbi.nlm.nih.gov/27956904/)

(68) Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, Sivamani RK. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J Evid Based Integr Med. 2018 Jan-Dec;23:2515690X18790725. doi: 10.1177/2515690X18790725. PMID: 30088420; PMCID: PMC6083746. (https://pubmed.ncbi.nlm.nih.gov/30088420/)

(69) Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1-75. doi: 10.1007/978-0-387-46401-5_1. PMID: 17569205. (https://pubmed.ncbi.nlm.nih.gov/17569205/)

(70) Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014 Jan;46(1):2-18. doi: 10.4143/crt.2014.46.1.2. Epub 2014 Jan 15. PMID: 24520218; PMCID: PMC3918523. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918523/)

(71) Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998 May;64(4):353-6. doi: 10.1055/s-2006-957450. PMID: 9619120. (https://pubmed.ncbi.nlm.nih.gov/9619120/)

(72) Shah MM, Liang Y, Cheng JJ, Daroch M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front Plant Sci. 2016 Apr 28;7:531. doi: 10.3389/fpls.2016.00531. PMID: 27200009; PMCID: PMC4848535. (https://pubmed.ncbi.nlm.nih.gov/27200009/)

(73) Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev. 2011 Dec;16(4):355-64. PMID: 22214255. (https://pubmed.ncbi.nlm.nih.gov/22214255/)

(74) Wong SK, Ima-Nirwana S, Chin KY. Effects of astaxanthin on the protection of muscle health (Review). Exp Ther Med. 2020 Oct;20(4):2941-2952. doi: 10.3892/etm.2020.9075. Epub 2020 Jul 29. PMID: 32855659; PMCID: PMC7444411. (https://pubmed.ncbi.nlm.nih.gov/32855659/)

(75) Ng QX, De Deyn MLZQ, Loke W, Foo NX, Chan HW, Yeo WS. Effects of Astaxanthin Supplementation on Skin Health: A Systematic Review of Clinical Studies. J Diet Suppl. 2021;18(2):169-182. doi: 10.1080/19390211.2020.1739187. Epub 2020 Mar 23. PMID: 32202443. (https://pubmed.ncbi.nlm.nih.gov/32202443/)

(76) Peng YJ, Lu JW, Liu FC, Lee CH, Lee HS, Ho YJ, Hsieh TH, Wu CC, Wang CC. Astaxanthin attenuates joint inflammation induced by monosodium urate crystals. FASEB J. 2020 Aug;34(8):11215-11226. doi: 10.1096/fj.202000558RR. Epub 2020 Jul 10. PMID: 32648603. (https://pubmed.ncbi.nlm.nih.gov/32648603/)

(77) Estévez-Santiago R, Olmedilla-Alonso B, Beltrán-de-Miguel B, Cuadrado-Vives C. Lutein and zeaxanthin supplied by red/orange foods and fruits are more closely associated with macular pigment optical density than those from green vegetables in Spanish subjects. Nutr Res. 2016 Nov;36(11):1210-1221. doi: 10.1016/j.nutres.2016.09.007. Epub 2016 Sep 14. PMID: 27866829. (https://pubmed.ncbi.nlm.nih.gov/27866829/)

(78) Obana A, Gohto Y, Nakazawa R, Moriyama T, Gellermann W, Bernstein PS. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci Rep. 2020 Jun 24;10(1):10262. doi: 10.1038/s41598-020-66962-2. PMID: 32581313; PMCID: PMC7314813. (https://pubmed.ncbi.nlm.nih.gov/32581313/)

(79) Jia YP, Sun L, Yu HS, Liang LP, Li W, Ding H, Song XB, Zhang LJ. The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. Molecules. 2017 Apr 20;22(4):610. doi: 10.3390/molecules22040610. PMID: 28425969; PMCID: PMC6154331. (https://pubmed.ncbi.nlm.nih.gov/28425969/)

(80) Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients. 2018 Sep 18;10(9):1321. doi: 10.3390/nu10091321. PMID: 30231532; PMCID: PMC6164534. (https://pubmed.ncbi.nlm.nih.gov/30231532/)

(81) Leermakers ET, Darweesh SK, Baena CP, Moreira EM, Melo van Lent D, Tielemans MJ, Muka T, Vitezova A, Chowdhury R, Bramer WM, Kiefte-de Jong JC, Felix JF, Franco OH. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr. 2016 Feb;103(2):481-94. doi: 10.3945/ajcn.115.120931. Epub 2016 Jan 13. PMID: 26762372. (https://pubmed.ncbi.nlm.nih.gov/26762372/)

(82) Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992 Jun 20;339(8808):1523-6. doi: 10.1016/0140-6736(92)91277-f. PMID: 1351198. (https://pubmed.ncbi.nlm.nih.gov/1351198/)

(83) Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci. 2015 Aug;1348(1):150-60. doi: 10.1111/nyas.12798. Epub 2015 Jun 22. PMID: 26099945; PMCID: PMC4553113. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553113/)

(84) Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol. 2006 Feb 7;16(3):296-300. doi: 10.1016/j.cub.2005.12.038. PMID: 16461283. (https://pubmed.ncbi.nlm.nih.gov/16461283/)

(85) Valenzano DR, Cellerino A. Resveratrol and the pharmacology of aging: a new vertebrate model to validate an old molecule. Cell Cycle. 2006 May;5(10):1027-32. doi: 10.4161/cc.5.10.2739. Epub 2006 May 15. PMID: 16687936. (https://pubmed.ncbi.nlm.nih.gov/16687936/)

(86) Semba RD, Ferrucci L, Bartali B, Urpí-Sarda M, Zamora-Ros R, Sun K, Cherubini A, Bandinelli S, Andres-Lacueva C. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014 Jul;174(7):1077-84. doi: 10.1001/jamainternmed.2014.1582. PMID: 24819981; PMCID: PMC4346286. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346286/)

(87) Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019 Feb 28;66(1):13-21. doi: 10.18388/abp.2018_2749. PMID: 30816367. (https://pubmed.ncbi.nlm.nih.gov/30816367/)

(88) Sochorova L, Prusova B, Cebova M, Jurikova T, Mlcek J, Adamkova A, Nedomova S, Baron M, Sochor J. Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers. Molecules. 2020 Nov 14;25(22):5311. doi: 10.3390/molecules25225311. PMID: 33202575; PMCID: PMC7696942. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696942/)

(89) Asbaghi O, Nazarian B, Reiner Ž, Amirani E, Kolahdooz F, Chamani M, Asemi Z. The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body weight: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020 Feb;34(2):239-253. doi: 10.1002/ptr.6518. Epub 2019 Dec 26. PMID: 31880030. (https://pubmed.ncbi.nlm.nih.gov/31880030/)

(90) Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich Grape Seed Extract Reduces Inflammation and Oxidative Stress and Restores Tight Junction Barrier Function in Caco-2 Colon Cells. Nutrients. 2020 Jun 1;12(6):1623. doi: 10.3390/nu12061623. PMID: 32492806; PMCID: PMC7352846. (https://pubmed.ncbi.nlm.nih.gov/32492806/)

(91) Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol. 2020 Apr;57(4):1205-1215. doi: 10.1007/s13197-019-04113-w. Epub 2019 Sep 30. PMID: 32180617; PMCID: PMC7054588. (https://pubmed.ncbi.nlm.nih.gov/32180617/)