Antioxidantien machen freie Radikale unschädlich. Dabei handelt es sich um Atome und Moleküle, denen ein Elektron in der äußeren Hülle fehlt (48). Dieses reißen sie an sich, wo immer sie es finden – und können so massive Gewebeschäden verursachen. Sind viele freie Radikale im Körper aktiv spricht man von oxidativem Stress (49). Er gilt als ein Risikofaktor für alle chronischen Erkrankungen und beschleunigt Alterungsprozesse (50).

Aging Max enthält eine Kombination natürlicher Antioxidantien, die oxidativen Stress im Körper verringern helfen: Lutein von Tagetes-Extrakt, Lycopin aus Tomaten-Extrakt, Astaxanthin, und L-Glutathion. Astaxanthin gilt als eines der stärksten Antioxidantien, weil es Zellmembranen von innen und außen schützen kann (51). Normalerweise wirken Antioxidantien entweder im Inneren von Zellen oder im Zellzwischenraum.

Gemeinsam können diese Wirkstoffe dazu beitragen, Inflamm-Aging zu verhindern. Darunter versteht man entzündliche Prozesse im Körper, die das Altern vorantreiben (52).

Weitere Wirkstoffe, kurz und knapp

Zusätzlich zu den bereits beschriebenen Nährstoffen liefert Aging Max eine Fülle wichtiger Vitamine, Mineralstoffe und Spurenelemente, jeweils in der für den menschlichen Körper optimal verwertbaren Form.

Vitamin A (Retinylacetat und Beta-Carotin): Dieses fettlösliche Vitamin A trägt wesentlich zur Zellbildung und zum Sehvermögen bei und hat zudem eine antioxidative Wirkung (53).

Vitamin B1 (Thiaminmononitrat): Dieses wasserlösliche Vitamin spielt eine wichtige Rolle bei der Verstoffwechslung von Kohlenhydraten und unterstützt zahlreiche Nervenfunktionen (54).

Vitamin B2 (Riboflavin): Als Bestandteil der Atemkette und Coenzym spielt dieses wasserlösliche Vitamin bei der Verstoffwechslung von Fetten und Aminosäuren eine wichtige Rolle (55).

Vitamin B3 (Nicotinamid): Dieses Vitamin ist an über 400 verschiedenen Enzymreaktionen beteiligt und trägt unter anderem zum Energiestoffwechsel, der Reizleitung der Nerven und der Zellteilung bei (56).

Vitamin B5 (Calcium-D-pantothenat): Pantothenat ist am Energiestoffwechsel ebenso beteiligt wie an der Bildung von Neurotransmittern und ist zudem unverzichtbar für die geistige Leistungsfähigkeit (57).

Vitamin B6 (Pyridoxinhydrochlorid): Für die Verstoffwechslung von Eiweiß und Fettsäuren sowie die Bildung von Neurotransmittern braucht der Körper Vitamin B6 (58).

Vitamin B7 (D-Biotin): Dieses Vitamin ist an der Verarbeitung von Kohlenhydraten, Fettsäuren und Aminosäuren beteiligt sowie an der Bildung von Haut und Haaren (59).

Vitamin B9 (5MTHF-Glucosamin, Quatrefolic®): Aktive Folsäure trägt zur Blutbildung und zur Zellteilung im gesamten Körper bei (60).

Vitamin B12 (Hydroxocobalamin): Ohne Vitamin B12 kann der Körper keine DNA bilden und Energie auf der Ebene der Zellen nicht verwerten (61).

Gepuffertes Vitamin C (Calcium-L-ascorbat): Diese Variante von Vitamin C ist magenschonend und unterstützt wie normales Vitamin C die Immunfunktion und die Kollagenbildung (62).

Vitamin E (D-α-Tocopherylacetat): Vitamin E stärkt Blutgefäße, Nervenzllen und Muskeln und schützt als Antioxidant Zellmembranen, das Herz und das Immunsystem (63).

Coenzym Q10: Die Atmungskette in den Mitochondrien braucht Q10, um Glukose aus dem Blut in Adenosintriphosphat umzuwandeln, die richtige Energie für Zellen (64).

Magnesium (Magnesiumoxid): Dieser Mineralstoff ist an über 900 Enzymreaktionen beteiligt und spielt eine wichtige Rolle für die Muskelfunktion, den Blutdruck und die Blutzuckerkontrolle (65).

Eisen (Eisenfumarat): Als Bestandteil des Hämoglobins in roten Blutkörperchen hilft dieses Spurenelement, Sauerstoff im Blut zu transportieren und Sauerstoff in den Muskeln zu speichern (66).

Zink (Zinkcitrat): Dieses Spurenelement hilft bei der Zellteilung, der Wundheilung, der Bildung von Hämoglobin und der Regulation des Blutzuckers. Als Bestandteil von antioxidativen Enzymreaktionen unterstützt es das Immunsystem (67).

Selen (Natriumselenit): Dieses Spurenelement braucht die Schilddrüse bei der Bildung von Hormonen und es ist an vielen Enzymen beteiligt, die unter anderem freie Radikale vernichten (68).

Jod (Kaliumiodid): Dieses elementare Spurenelement braucht die Schilddrüse für die Bildung von Schilddrüsenhormonen, die den Energiestoffwechsel regulieren (69).

Silicium (Siliciumdioxid): Dieser Mineralstoff kann Feuchtigkeit binden und wird für die Bildung von Bindegewebe, Knorpelmasse, Haut, Haaren und Nägeln benötigt. Außerdem ist es an der Synthese von Kollagen und Elastin beteiligt (70).

Mangan (Mangansulfat): Dieses Spurenelement ist in zahlreichen Enzymen enthalten, unter anderem dem körpereigenen Antioxidans Superoxiddismutase. Außerdem wird es für die Energiebereitstellung in den Zellen gebraucht und den Aufbau von Bindegewebe, Knochen und Knorpeln (71).

Kupfer (Kupfersulfat): Der Stoffwechsel braucht Kupfer für die Aufnahme von Eisen sowie die Energiegewinnung und den Aufbau von Knochen, Haut und Haaren (72).

Molybdän (Natriummolybdat): Der Körper braucht dieses Spurenelement als Cofaktor von wichtigen Enzymen, unter anderem für die Verstoffwechslung von Purinen und die Aufnahme von Eisen (73).

Chrom (Chrompicolinat): Dieses Spurenelement spielt eine wichtige Rolle bei der Blutzuckerkontrolle und der Insulinfunktion und ist zudem am Stoffwechsel von Kohlenhydraten, Eiweiß und Fett beteiligt (74).

Borsäure (Natriumborat): Das Element Bor ist wichtig beim Aufbau von Knochen, beschleunigt die Wundheilung und scheint die Wirkung von Vitamin D zu verbessern (75).

(1) Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019 Jul;20(7):421-435. doi: 10.1038/s41580-019-0101-y. PMID: 30733602. (https://pubmed.ncbi.nlm.nih.gov/30733602/)
(2) Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463. doi: 10.1155/2014/238463. Epub 2014 Apr 10. PMID: 24818134; PMCID: PMC4003832. (https://pubmed.ncbi.nlm.nih.gov/24818134/)

(3) Robert L, Fulop T. Aging of cell communication: loss of receptor function. Interdiscip Top Gerontol. 2014;39:142-62. doi: 10.1159/000358903. Epub 2014 May 13. PMID: 24862018. (https://pubmed.ncbi.nlm.nih.gov/24862018/)

(4) Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008 May;63(5):492-6. doi: 10.1203/PDR.0b013e31816c5bc3. PMID: 18427293. (https://pubmed.ncbi.nlm.nih.gov/18427293/)

(5) Fernstrom JD. Dietary amino acids and brain function. J Am Diet Assoc. 1994 Jan;94(1):71-7. doi: 10.1016/0002-8223(94)92045-1. PMID: 7903674. (https://pubmed.ncbi.nlm.nih.gov/7903674/)

(6) Lewis T, Stone WL. Biochemistry, Proteins Enzymes. 2021 May 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 32119368. (https://pubmed.ncbi.nlm.nih.gov/32119368/)

(7) Li P, Yin YL, Li D, Kim SW, Wu G. Amino acids and immune function. Br J Nutr. 2007 Aug;98(2):237-52. doi: 10.1017/S000711450769936X. Epub 2007 Apr 3. PMID: 17403271. (https://pubmed.ncbi.nlm.nih.gov/17403271/)

(8) Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18:2673-86. Epub 2012 Nov 12. PMID: 23170060; PMCID: PMC3501277. (https://pubmed.ncbi.nlm.nih.gov/23170060/)

(9) Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1(Suppl 1):S33-8. doi: 10.1093/gerona/glu049. PMID: 24833584; PMCID: PMC4022129. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022129/)

(10) Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-772. doi: 10.2147/CIA.S158513. PMID: 29731617; PMCID: PMC5927356. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927356/)

(11) Soultoukis GA, Partridge L. Dietary Protein, Metabolism, and Aging. Annu Rev Biochem. 2016 Jun 2;85:5-34. doi: 10.1146/annurev-biochem-060815-014422. Epub 2016 Apr 29. PMID: 27145842. (https://pubmed.ncbi.nlm.nih.gov/27145842/)

(12) Lourenço R, Camilo ME. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002 Nov-Dec;17(6):262-70. PMID: 12514918. (https://pubmed.ncbi.nlm.nih.gov/12514918/)

(13) Kim C, Cha YN. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014 Jan;46(1):89-100. doi: 10.1007/s00726-013-1545-6. Epub 2013 Aug 11. PMID: 23933994. (https://pubmed.ncbi.nlm.nih.gov/23933994/)

(14) Schaffer SW, Jong CJ, Ito T, Azuma J. Role of taurine in the pathologies of MELAS and MERRF. Amino Acids. 2014 Jan;46(1):47-56. doi: 10.1007/s00726-012-1414-8. Epub 2012 Nov 20. PMID: 23179085. (https://pubmed.ncbi.nlm.nih.gov/23179085/)

(15) Bhat MA, Ahmad K, Khan MSA, Bhat MA, Almatroudi A, Rahman S, Jan AT. Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases. Biomolecules. 2020 Jun 5;10(6):863. doi: 10.3390/biom10060863. PMID: 32516961; PMCID: PMC7355587. (https://pubmed.ncbi.nlm.nih.gov/32516961/)

(16) Menzie J, Pan C, Prentice H, Wu JY. Taurine and central nervous system disorders. Amino Acids. 2014 Jan;46(1):31-46. doi: 10.1007/s00726-012-1382-z. Epub 2012 Aug 19. PMID: 22903433. (https://pubmed.ncbi.nlm.nih.gov/22903433/)

(17) Schaffer S, Kim HW. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol Ther (Seoul). 2018 May 1;26(3):225-241. doi: 10.4062/biomolther.2017.251. PMID: 29631391; PMCID: PMC5933890. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933890/)

(18) Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM. Significance of l-carnitine for human health. IUBMB Life. 2017 Aug;69(8):578-594. doi: 10.1002/iub.1646. Epub 2017 Jun 26. PMID: 28653367. (https://pubmed.ncbi.nlm.nih.gov/28653367/)

(19) Lee BJ, Lin JS, Lin YC, Lin PT. Effects of L-carnitine supplementation on oxidative stress and antioxidant enzymes activities in patients with coronary artery disease: a randomized, placebo-controlled trial. Nutr J. 2014 Aug 4;13:79. doi: 10.1186/1475-2891-13-79. PMID: 25092108; PMCID: PMC4125592. (https://pubmed.ncbi.nlm.nih.gov/25092108/)

(20) Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014 Jan 10;533(2):469-76. doi: 10.1016/j.gene.2013.10.017. Epub 2013 Oct 19. PMID: 24148561. (https://pubmed.ncbi.nlm.nih.gov/24148561/)

(21) Maldonado C, Vázquez M, Fagiolino P. Potential Therapeutic Role of Carnitine and Acetylcarnitine in Neurological Disorders. Curr Pharm Des. 2020;26(12):1277-1285. doi: 10.2174/1381612826666200212114038. PMID: 32048954. (https://pubmed.ncbi.nlm.nih.gov/32048954/)

(22) McRae MP. Therapeutic Benefits of l-Arginine: An Umbrella Review of Meta-analyses. J Chiropr Med. 2016 Sep;15(3):184-9. doi: 10.1016/j.jcm.2016.06.002. Epub 2016 Sep 10. PMID: 27660594; PMCID: PMC5021928. (https://pubmed.ncbi.nlm.nih.gov/27660594/)

(23) Campbell R, Fisher JP, Sharman JE, McDonnell BJ, Frenneaux MP. Contribution of nitric oxide to the blood pressure and arterial responses to exercise in humans. J Hum Hypertens. 2011 Apr;25(4):262-70. doi: 10.1038/jhh.2010.53. Epub 2010 May 27. PMID: 20505750. (https://pubmed.ncbi.nlm.nih.gov/20505750/)

(24) Tripathi P. Nitric oxide and immune response. Indian J Biochem Biophys. 2007 Oct;44(5):310-9. PMID: 18341206. (https://pubmed.ncbi.nlm.nih.gov/18341206/)

(25) Wittmann F, Prix N, Mayr S, Angele P, Wichmann MW, van den Engel NK, Hernandez-Richter T, Chaudry IH, Jauch KW, Angele MK. L-arginine improves wound healing after trauma-hemorrhage by increasing collagen synthesis. J Trauma. 2005 Jul;59(1):162-8. doi: 10.1097/01.ta.0000171529.06625.a8. PMID: 16096557. (https://pubmed.ncbi.nlm.nih.gov/16096557/)

(26) Choi MJ, Chang KJ. Effect of dietary taurine and arginine supplementation on bone mineral density in growing female rats. Adv Exp Med Biol. 2013;776:335-45. doi: 10.1007/978-1-4614-6093-0_31. PMID: 23392895. (https://pubmed.ncbi.nlm.nih.gov/23392895/)

(27) Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016 Jan;60(1):134-46. doi: 10.1002/mnfr.201500031. Epub 2015 Jun 12. PMID: 25929483. (https://pubmed.ncbi.nlm.nih.gov/25929483/)

(28) Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005 Dec 9;2(2):38-44. doi: 10.1186/1550-2783-2-2-38. PMID: 18500954; PMCID: PMC2129149. (https://pubmed.ncbi.nlm.nih.gov/18500954/)

(29) Lavergne V, Taft RJ, Alewood PF. Cysteine-rich mini-proteins in human biology. Curr Top Med Chem. 2012;12(14):1514-33. doi: 10.2174/156802612802652411. PMID: 22827521. (https://pubmed.ncbi.nlm.nih.gov/22827521/)

(30) Clemente Plaza N, Reig García-Galbis M, Martínez-Espinosa RM. Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules. 2018 Mar 3;23(3):575. doi: 10.3390/molecules23030575. PMID: 29510494; PMCID: PMC6017824. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017824/)

(31) Sasabe J, Suzuki M. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med. 2019 Mar 25;68(1):1-16. doi: 10.2302/kjm.2018-0001-IR. Epub 2018 May 22. PMID: 29794368. (https://pubmed.ncbi.nlm.nih.gov/29794368/)

(32) Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab (Lond). 2007 Nov 6;4:24. doi: 10.1186/1743-7075-4-24. PMID: 17986345; PMCID: PMC2198910. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2198910/)

(33) Parcell, Stephen. (2002). Sulfur in human nutrition and applications in medicine. Alternative medicine review : a journal of clinical therapeutic. 7. 22-44. (https://www.researchgate.net/publication/11466548_Sulfur_in_human_nutrition_and_applications_in_medicine)

(34) van der Merwe M, Bloomer RJ. The Influence of Methylsulfonylmethane on Inflammation-Associated Cytokine Release before and following Strenuous Exercise. J Sports Med (Hindawi Publ Corp). 2016;2016:7498359. doi: 10.1155/2016/7498359. Epub 2016 Oct 23. PMID: 27844051; PMCID: PMC5097813. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097813/)

(35) Ballatori N, Krance SM, Marchan R, Hammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med. 2009 Feb-Apr;30(1-2):13-28. doi: 10.1016/j.mam.2008.08.004. Epub 2008 Aug 26. PMID: 18786560; PMCID: PMC2716123. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716123/)

(36) Honda Y, Kessoku T, Sumida Y, Kobayashi T, Kato T, Ogawa Y, Tomeno W, Imajo K, Fujita K, Yoneda M, Kataoka K, Taguri M, Yamanaka T, Seko Y, Tanaka S, Saito S, Ono M, Oeda S, Eguchi Y, Aoi W, Sato K, Itoh Y, Nakajima A. Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study. BMC Gastroenterol. 2017 Aug 8;17(1):96. doi: 10.1186/s12876-017-0652-3. PMID: 28789631; PMCID: PMC5549431. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549431/)

(37) Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017 Jun;18(2):153-165. doi: 10.1007/s11154-017-9424-1. PMID: 28516265. (https://pubmed.ncbi.nlm.nih.gov/28516265/)

(38) Carlberg C. Vitamin D: A Micronutrient Regulating Genes. Curr Pharm Des. 2019;25(15):1740-1746. doi: 10.2174/1381612825666190705193227. PMID: 31298160. (https://pubmed.ncbi.nlm.nih.gov/31298160/)

(39) Nair R, Maseeh A. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother. 2012 Apr;3(2):118-26. doi: 10.4103/0976-500X.95506. PMID: 22629085; PMCID: PMC3356951. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356951/)

(40) DiNicolantonio JJ, Bhutani J, O’Keefe JH. The health benefits of vitamin K. Open Heart. 2015 Oct 6;2(1):e000300. doi: 10.1136/openhrt-2015-000300. PMID: 26468402; PMCID: PMC4600246. (https://pubmed.ncbi.nlm.nih.gov/26468402/)

(41) Weber P. Vitamin K and bone health. Nutrition. 2001 Oct;17(10):880-7. doi: 10.1016/s0899-9007(01)00709-2. Erratum in: Nutrition 2001 Nov-Dec;17(11-12):1024. PMID: 11684396. (https://pubmed.ncbi.nlm.nih.gov/11684396/)

(42) Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006 May;231(5):490-504. doi: 10.1177/153537020623100503. PMID: 16636297. (https://pubmed.ncbi.nlm.nih.gov/16636297/)

(43) Hwang JS, Shin YJ. Role of Choline in Ocular Diseases. Int J Mol Sci. 2021 Apr 29;22(9):4733. doi: 10.3390/ijms22094733. PMID: 33946979; PMCID: PMC8124599. (https://pubmed.ncbi.nlm.nih.gov/33946979/)

(44) Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician. 2003 Oct 15;68(8):1539-42. PMID: 14596440. (https://pubmed.ncbi.nlm.nih.gov/14596440/)

(45) Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol. 1992 Feb;36(1):27-38. doi: 10.1016/0378-8741(92)90057-x. PMID: 1501490. (https://pubmed.ncbi.nlm.nih.gov/1501490/)

(46) Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res. 2008 Jul;22(7):851-8. doi: 10.1002/ptr.2384. PMID: 18567057. (https://pubmed.ncbi.nlm.nih.gov/18567057/)

(47) Kang S, Min H. Ginseng, the ‘Immunity Boost’: The Effects of Panax ginseng on Immune System. J Ginseng Res. 2012 Oct;36(4):354-68. doi: 10.5142/jgr.2012.36.4.354. PMID: 23717137; PMCID: PMC3659612. (https://pubmed.ncbi.nlm.nih.gov/23717137/)

(48) Boveris A. Biochemistry of free radicals: from electrons to tissues. Medicina (B Aires). 1998;58(4):350-6. PMID: 9816695. (https://pubmed.ncbi.nlm.nih.gov/9816695/)

(49) Preiser JC. Oxidative stress. JPEN J Parenter Enteral Nutr. 2012 Mar;36(2):147-54. doi: 10.1177/0148607111434963. Epub 2012 Feb 1. PMID: 22301329. (https://pubmed.ncbi.nlm.nih.gov/22301329/)

(50) Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-772. doi: 10.2147/CIA.S158513. PMID: 29731617; PMCID: PMC5927356. (https://pubmed.ncbi.nlm.nih.gov/29731617/)

(51) Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications–a review. Mar Drugs. 2014 Jan 7;12(1):128-52. doi: 10.3390/md12010128. PMID: 24402174; PMCID: PMC3917265. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917265/)

(52) Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci. 2019 Sep 10;20(18):4472. doi: 10.3390/ijms20184472. PMID: 31510091; PMCID: PMC6769561. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769561/)

(53) Chea EP, Lopez MJ, Milstein H. Vitamin A. [Updated 2021 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. (https://www.ncbi.nlm.nih.gov/books/NBK482362/)

(54) Martel JL, Kerndt CC, Doshi H, et al. Vitamin B1 (Thiamine) [Updated 2021 Sep 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. (https://www.ncbi.nlm.nih.gov/books/NBK482360/)

(55) Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003 Jun;77(6):1352-60. doi: 10.1093/ajcn/77.6.1352. PMID: 12791609. (https://pubmed.ncbi.nlm.nih.gov/12791609/)

(56) Peechakara BV, Gupta M. Vitamin B3. [Updated 2021 Jun 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. (https://www.ncbi.nlm.nih.gov/books/NBK526107/)

(57) Tahiliani AG, Beinlich CJ. Pantothenic acid in health and disease. Vitam Horm. 1991;46:165-228. doi: 10.1016/s0083-6729(08)60684-6. PMID: 1746161. (https://pubmed.ncbi.nlm.nih.gov/1746161/)

(58) Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells. 2018 Jul 22;7(7):84. doi: 10.3390/cells7070084. PMID: 30037155; PMCID: PMC6071262. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071262/)

(59) Zempleni J, Wijeratne SS, Hassan YI. Biotin. Biofactors. 2009 Jan-Feb;35(1):36-46. doi: 10.1002/biof.8. PMID: 19319844; PMCID: PMC4757853. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4757853/)

(60) Zsigrai S, Kalmár A, Valcz G, Szigeti KA, Barták BK, Nagy ZB, Igaz P, Tulassay Z, Molnár B. A B9-vitamin élettani és kórélettani jelentősége. Összegzés a folsav táplálékkiegészítőként történő alkalmazásának 30. évfordulójára [Physiological and pathophysiological significance of vitamin B9. Summary on the occasion of the 30-year introduction of folic acid as a dietary supplement]. Orv Hetil. 2019 Jul;160(28):1087-1096. Hungarian. doi: 10.1556/650.2019.31441. PMID: 31280597. (https://pubmed.ncbi.nlm.nih.gov/31280597/)

(61) O’Leary F, Samman S. Vitamin B12 in health and disease. Nutrients. 2010 Mar;2(3):299-316. doi: 10.3390/nu2030299. Epub 2010 Mar 5. PMID: 22254022; PMCID: PMC3257642. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257642/)

(62) Bendich A, Langseth L. The health effects of vitamin C supplementation: a review. J Am Coll Nutr. 1995 Apr;14(2):124-36. doi: 10.1080/07315724.1995.10718484. Erratum in: J Am Coll Nutr 1995 Aug;14(4):398. Erratum in: J Am Coll Nutr 1995 Jun;14(3):218. PMID: 7790686. (https://pubmed.ncbi.nlm.nih.gov/7790686/)

(63) Clarke MW, Burnett JR, Croft KD. Vitamin E in human health and disease. Crit Rev Clin Lab Sci. 2008;45(5):417-50. doi: 10.1080/10408360802118625. PMID: 18712629. (https://pubmed.ncbi.nlm.nih.gov/18712629/)

(64) Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 Supplementation in Aging and Disease. Front Physiol. 2018 Feb 5;9:44. doi: 10.3389/fphys.2018.00044. PMID: 29459830; PMCID: PMC5807419. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807419/)

(65) Al Alawi AM, Majoni SW, Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. Int J Endocrinol. 2018 Apr 16;2018:9041694. doi: 10.1155/2018/9041694. PMID: 29849626; PMCID: PMC5926493. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926493/)

(66) Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014 Feb;19(2):164-74. PMID: 24778671; PMCID: PMC3999603. (https://pubmed.ncbi.nlm.nih.gov/24778671/)

(67) Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013 Feb;18(2):144-57. PMID: 23914218; PMCID: PMC3724376. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724376/)

(68) Rayman MP. Selenium and human health. Lancet. 2012 Mar 31;379(9822):1256-68. doi: 10.1016/S0140-6736(11)61452-9. Epub 2012 Feb 29. PMID: 22381456. (https://pubmed.ncbi.nlm.nih.gov/22381456/)

(69) Torti JF, Correa R. Potassium Iodide. 2021 Jul 18. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 31194460. (https://pubmed.ncbi.nlm.nih.gov/31194460/)

(70) Martin KR. Silicon: the health benefits of a metalloid. Met Ions Life Sci. 2013;13:451-73. doi: 10.1007/978-94-007-7500-8_14. PMID: 24470100. (https://pubmed.ncbi.nlm.nih.gov/24470100/)

(71) Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci. 2013;13:199-227. doi: 10.1007/978-94-007-7500-8_7. PMID: 24470093; PMCID: PMC6589086. (https://pubmed.ncbi.nlm.nih.gov/24470093/)

(72) Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. 2016 May;35:107-15. doi: 10.1016/j.jtemb.2016.02.006. Epub 2016 Mar 5. PMID: 27049134. (https://pubmed.ncbi.nlm.nih.gov/27049134/)

(73) Schwarz G, Belaidi AA. Molybdenum in human health and disease. Met Ions Life Sci. 2013;13:415-50. doi: 10.1007/978-94-007-7500-8_13. PMID: 24470099. (https://pubmed.ncbi.nlm.nih.gov/24470099/)

(74) Vincent JB, Lukaski HC. Chromium. Adv Nutr. 2018 Jul 1;9(4):505-506. doi: 10.1093/advances/nmx021. PMID: 30032219; PMCID: PMC6054252. (https://pubmed.ncbi.nlm.nih.gov/30032219/)

(75) Pizzorno L. Nothing Boring About Boron. Integr Med (Encinitas). 2015 Aug;14(4):35-48. PMID: 26770156; PMCID: PMC4712861. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712861/)